
On Deck App
Musings on a passion project



About NRASC

• Community volunteer organisation since 1932
• Inclusive, multigenerational 

• 30-50 members, age 3-80+
• 7 am - 9:30 am Sundays 6 mo.
• Meet = Events and Heats
• Event = eg. 50m breaststroke hcp
• Race types (handicap, scratch, relay)

https://nrasc.org


How to run a swimming race

Officials:

Starter (to gather swimmers and start the race)

Timekeepers (one per lane with a stopwatch)

Invigilator (to judge placings)

Time recorder (to collect all of the results)



"Legacy"
• Excel-based, paper on clipboards, CC

• Handicapped starts calculated by hand

• Registrations by hand, break into heats

• One copy at Starting Block, one at Finish

• Struggle to finish meet on time

• Post-meet manual data entry



... before you begin - regulatory 

Get the OK from your employer to work on your side project, 
even if you are working on your project in your own time

Don't use company equipment 

Get the OK from your significant other to spend lots of time

Spend leisure cricket-watching time coding

I don't recommend it, but a lockdown or 3 can give you spare time



Preparation
Gather requirements - many processes are done by hand, with unspoken rules

Build trust and get buy-in

Convince people who have done things this way for many years

Respect their experience

Find out why things are done this way before changing it

Show that you understand the club and its culture and rituals

Consult extensively

Iterative development cycles gathering feedback



On Deck App - requirements
I had to have a punny name

Restrict scope (just runs swim meets, not membership or payment)

iPad/tablet operation (web single-page app)

automate as much as practical but let Administrator stay in control

GUI developed with all officials, iteratively

RBAC

Documentation - did you think you'd get away without it?

https://github.com/brendony/brendony.github.io/wiki/On-Deck-App-%E2%80%90-Documentation


Lessons learnt
Extremely rewarding project, helped me rediscover the joy of code

Don't have time to do it properly? Do it twice

Development priorities for a single-dev project:

Don't scale up for traffic, try to scale up dev time vs outcome 
Minimise friction:

avoid REST/GraphQL

avoid self hosting and explicit hosting



Classical Enterprise Architecture

Front-end BFF Domain

- Rest/GraphQL 
- Security ORM?

- Rest/GraphQL 
- Security



Platforms investigated
Elm / Lamdera by REA alumni Mario Rogic - is Elm a dead-end?

Version 1 of my app was in https://anvil.works

Full-stack Python, extremely low barrier to entry

Hosted and developed on Anvil's site

Slow database access killed this version

Python codebases need an extensive test suite - no compiler to save you

https://lamdera.com/
https://anvil.works


anvil.works

Front-end Lambda

Python Python Python 
libraryPython 

method 
calls



Current version

Dart/Flutter with Firebase for db and auth

CI/CD using github actions

Option to develop natively

Relies on Google to keep the lights on



Dart/Flutter/Firebase/Firestore

Front-end

Dart/Flutter Object 
databaseDart library



What I've enjoyed
Problem solving, eg

10 swimmers, 4 available lanes

Invent algorithm to choose relay teams to minimise starts

Create a GUI to match users' mental models

Extensive walk-throughs with prototypes

Find many bugs, many friction points

Seeing the impact of my work firsthand

Positive feedback



What has been... less fun

Pressure when building for 50 friends is surprisingly high, immovable 
deadlines

Code maintenance and bug-tracking, prioritising and fixing

Bug fixing at 7am in a swimming costume with 50 people waiting

Dealing with spotty internet at the pool



Finally

Go out and do good


